A Flexible Privacy-Preserving Framework for Singular Value Decomposition Under Internet of Things Environment
نویسندگان
چکیده
The singular value decomposition (SVD) is a widely used matrix factorization tool which underlies plenty of useful applications, e.g. recommendation system, abnormal detection and data compression. Under the environment of emerging Internet of Things (IoT), there would be an increasing demand for data analysis to better human’s lives and create new economic growth points. Moreover, due to the large scope of IoT, most of the data analysis work should be done in the network edge, i.e. handled by fog computing. However, the devices which provide fog computing may not be trustable while the data privacy is often the significant concern of the IoT application users. Thus, when performing SVD for data analysis purpose, the privacy of user data should be preserved. Based on the above reasons, in this paper, we propose a privacy-preserving fog computing framework for SVD computation. The security and performance analysis shows the practicability of the proposed framework. Furthermore, since different applications may utilize the result of SVD operation in different ways, three applications with different objectives are introduced to show how the framework could flexibly achieve the purposes of different applications, which indicates the flexibility of the design.
منابع مشابه
SVD based Data Transformation Methods for Privacy Preserving Clustering
Nowadays privacy issues are major concern for many government and other private organizations to delve important information from large repositories of data. Privacy preserving clustering which is one of the techniques emerged to addresses the problem of extracting useful clustering patterns from distorted data without accessing the original data directly. In this paper two hybrid data transfor...
متن کاملPrivacy Preserving Clustering on Distorted data
In designing various security and privacy related data mining applications, privacy preserving has become a major concern. Protecting sensitive or confidential information in data mining is an important long term goal. An increased data disclosure risks may encounter when it is released. Various data distortion techniques are widely used to protect sensitive data; these approaches protect data ...
متن کاملCLUST-SVD: Privacy preserving clustering in singular value decomposition
Large repositories of data contain sensitive information that must be protected against unauthorized access. The protection of the confidentiality of this information has been a long-term goal for the database security research community and for the government statistical agencies. Recent advances in data mining and machine learning algorithms have increased the disclosure risks that one may en...
متن کاملA Privacy-Preserving Data Mining Method Based on Singular Value Decomposition and Independent Component Analysis
Privacy protection is indispensable in data mining, and many privacy-preserving data mining (PPDM) methods have been proposed. One such method is based on singular value decomposition (SVD), which uses SVD to find unimportant information for data mining and removes it to protect privacy. Independent component analysis (ICA) is another data analysis method. If both SVD and ICA are used, unimport...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017